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Abstract. We present a real space renormalisation group calculation for the adsorption 
of a single self-avoiding walk in d dimensions at a ( d  - 1)-dimensional impenetrable wall. 
The case d = 3 is used to check the method. For d = 2 the result for the crossover exponent 
q gives cp =0.55*0.15. This, in connection with enumerations of Ishinabe, clearly rules 
out de Gennes’ conjecture c p =  l - U  also for the case d = 2 .  For d = 2  cells up to 
6 x 6 are used, for d = 3 cells up to 3 x 3 x 3. 

1. Introduction 

Real space renormalisation group (RSRG) methods were used to study many different 
problems of polymers during the last few years. For a detailed introduction we refer 
to a recent review of Stanley et a1 (1982) and references therein. Usually the exponent 
v of the mean square radius of gyration was calculated. On the other hand, the problem 
of the adsorption of a single polymer chain (SAW) at a hard wall, exerting a short-range 
attractive force, has found a longstanding interest in the literature during the last 
twenty years (see Eisenreigler eta1 (1982), Whittington (1982) and references therein). 
This problem up to now has not been studied by RS methods. Such methods turned 
out to be very useful for investigations of semi-infinite magnetic systems, which were 
also examined in great detail during the last few years (see Binder (1983) and references 
therein). Considering recent developments in the field, it is necessary to study the 
adsorption especially for d = 2 by RS methods. The question we are mainly concerned 
with here is the validity of de Gennes’ (1976) conjecture cp = 1 - U. cp is the crossover 
exponent, which describes the adsorption transition. Due to the n+O theorem (de 
Gennes 1972,1977,1979) the transition point corresponds to the so-called multicritical 
SB point of the semi-infinite n-vector model in the limit n + 0 (Eisenriegler et a1 1982). 
For this model Diehl and Dietrich (1981) found that cp = 1 - v does not hold in general. 
In a recent exact enumeration of SAWS on a diamond lattice Ishinabe (1982b) calculated 
q d - 3  = 0 . 6 1  0.1 instead of 0.41. The best value up to now is due to Eisenriegler et a1 

For d = 2 Ishinabe (1982a) also found strong deviations from cp = 1 - U by enumer- 
ation of SAWS on a square lattice. He  obtained approximately cp = 0.55 kO.1 (estimated 
from table 111 of his paper; he uses 6,= llcp). Because enumerations can only deal 
with very short chains it is necessary to investigate this problem by different techniques. 
Here we try it by a simple RSRG method. In 0 2 we describe the method. In § 3 the 

(1982), who found V d = 3  = 0.59 ?. 0.02. 
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results for d = 3 are compared with the results of the references mentioned above and 
the results for d = 2 are  given. Section 4 contains the conclusions. 

2. Model and method 

In the present work we model the polymer chain at a wall by a single SAW on  a 
d-dimensional simple cubic lattice, The chain is confined to  the positive half space 
+:= { ( x l , .  . . , x d ) ,  x1 a O } .  Then each bond has a probability k, if it is situated in the 
x ,  = 0 plane and the normal bulk-probability k ,  otherwise. To renormalise the bulk 
couplings we use the simple cell method introduced by d e  Queiroz and Chaves (1980) 
for d = 2 and Family (1981) for d = 3. This method gives very accurate results for the 
exponent Y (see below) and is explained in detail in figure 1. This renormalisation 

s:2 - L 
Figure 1. Simple example for the cell renormaha-  
tion for scaling factor s = 2 .  Each bond has the 
probability k , .  The wa!k starts at the origin (U) and 
‘spans’ if it reaches one of the circles (0). For the 
present example this leads to  the renormalisation 
equation k b  = T (  k , )  = k g  + 2 k i  + k ; .  For more 
details see de Queiroz and Chaves (1980) ,  Family 
(1981)  or Kremer (1983) .  

Figure 2. Simple example for the renormalisation of 
the surface coupling analogously to figure 1. The 
f-rule gives k :  = T’( k , ,  k , )  = k i  + k , k i  while the 
$-rule would give k :  = T’( k , )  = e + k , T k i  + k , k i .  

transformation leads to  a non-trivial fixed point k &  Near this fixed point one can 
write for the correlation length ,$(IC,) 

< * ( k B ) a l k B -  kgl-’”. (1) 

<( k;3) = s-’ < ( k d  

O n  the other hand for the renormalised lattice one has (s is the renormalisation factor) 

with kf3 = T (  k, )  ( 2 )  
(see e.g. Napiorowski er a1 (1979)). 

This transformation has a relevant eigenvalue A B  which in this simple case is just 
aT(kB)/akBl,, and one  can write the exponent v as v =In s/ln A B .  

The  situation now changes if one  introduces a different coupling in the plane xI = 0. 
Nakanishi (1981) considered walks in infinite space --CD < x1 < CC with a bond probability 
k, (#kB)  in the ‘defect plane’ xl = O  and found the value Ta =CC for the critical 
temperature T, of adsorption. But here we are  looking for the case of an  impenetrable 
hard wall (walk in +)  exerting a short-range attractive force. Using the results of an  
earlier investigation (de Gennes 1976),  a walk in a surface cell is only renormalised 
to  an  adsorbed step o r  walk if a finite fraction of the bonds lies in the surface. This 
fraction can be arbitrarily small, but has to be finite. In the  following we use as our  
minimal values f, $, and b. The corresponding renormalisations a re  then called 
after these values as f-rule etc. Figure 2 gives an  example of such a surface cell 
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renormalisation. For more details we refer to Kremer (1983). We now have a two- 
parameter RS procedure with 

( k k ,  k : ) = y ( k ~ , k s ) = ( T ! k ~ ) ,  T'(kB, ks)) (3) 
and 

5 ( k I , , ' k : ) = s - ' 5 ( k s ,  ks) 
has a multicritical fixed point ( k ; ,  k:) with two eigenvalues >1. 

Linearising the transformation around the multicritical point now results in 

(4) 

with eigenvalues A B  and A,. This gives v = In A B / h  s, while the crossover exponent cp 
is determined by both eigenvalues (Stanley et al 1982) and given by 

cp =In AJln A B .  (6) 

The generalisation to non-integer values of s = etc is then straightforward (Stanley 
eta1 1982). 

3. Results 

For this calculation the numbers of spanning SAWS in cells up to 3 X 3 X 3 ( d  = 3) and 
up to 6 X 6 for d = 2 were enumerated by a computer algorithm. For k, = k B  the data 
are the same as earlier results by Family (1981), d = 3, and Redner and Reynolds 
(1981), d = 2. The results of the enumerations are given in the appendix. 

Our main interest concerns the case d = 2. Figure 3 shows the phase diagram, as 
it is given by the KS flux for s = 2 ,  d = 2 .  The flux diagram reproduces qualitatively 
for d = 2 the well known behaviour of semi-infinite magnets. The flow directions along 
the critical lines are indicated in the figure. The multicritical SB point is completely 

0 05 ks 
Ik(B.01 

Figure 3. Phase diagram given by the renormalisation flux for renormalisation of a 2 x 2 
cell to  a 1 x 1 cell. The multicritical fixed point ( k i B ,  k s B )  is completely unstable. As is 
claimed by field theory (Eisenriegler et a1 1982, Dietrich 1982), k i B  the critical bulk 
coupling at the multicritical S B  point is the same as for the pure bulk case. For a direct 
comparison with the magnetic phase diagram we refer to Kremer (1983) or Dietrich (1982). 
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unstable; the flow direction for k,  < k:n points to the bulk fixed point. This fixed 
point is stable with respect to the critical line to  the SB point and unstable with respect 
t o  the kB axis. A similar behaviour is given for the line (0, k : )  ( k i B ,  kSB) .  The point 
(0, k : )  represents the completely adsorbed chain at  T = 0. For d = 2 (see figure 3) 
k‘, = 1 corresponds to the fully stretched chain, which means that the effective coordina- 
tion number at T = 0 is equal to one, as expected. In all cases, at  the SB point we 
have A,>  As. A t  SB the bulk behaviour dominates and the crossover exponent cp is 
given by equation (6). Table 1( b )  shows the results for d = 2, for the  SB point. The 
other fixed points a re  then trivial. As shown earlier by other authors, the exponent 
v nicely extrapolates for increasing s, and s = s,/s2 approaching 1 to  the best value 
v=O.75 ( d  = 2 )  (Nienhuis 1982). The value of cp is calculated in all cases for the f - ,  
i - ,  f -  and &rules. Here a convergent extrapolation to a ‘one over infinity’ rule for 
s + 1 is very difficult. We estimate 

This value is in good agreement with Ishinabe’s (1982a, b) enumerations. Therefore 
using both results also for d = 2 the conjecture cp = 1 - v can be rejected. 

Table l ( a )  gives the corresponding results for d = 3. Although here only cells up  
to 3 X 3 X 3 were used, it is clear that the results a re  in reasonable agreement with the 
known behaviour and the best value of (pcf=3=0.59 (Eisenriegler er al 1982). Also 
the renormalisation flux is qualitatively the same as in figure 3. 

4. Conclusion 

We presented a simple RSRG calculation for the adsorption of a single SAW at a hard 
wall, which exerts a short-range attractive force. The case d = 3 was treated to prove 
the validity of our method. For d = 2 it was shown that the phase diagram, qualitatively, 
is the same as for d = 3. In agreement with a recent enumeration of Ishinabe (1982a, b) 
the relation 9 d = 2  = 1 - vdZ2(  =0.25) is far outside the error bars. 
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Appendix. Enumeration results 

Here we give the complete enumeration results for spanning walks on cells up  to the 
size 6 X 6 ( d  = 2 )  and 3 X 3 X 3 ( d  = 3).  The first column gives the number of bonds N, 
while the second gives the total number of spanning S A W S  N,(N) with N bonds. The 
next columns give the number of S A W S  separated due to the amount N,  of surface 
bonds. The total number of spanning walks is the same as found by Family (1981) 
( d = 3 )  and Redner and Reynolds (1981) ( d = 2 ) .  
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d = 2  2 x 2  cell 
N N T ( N )  N,=O 1 2 

2 1  0 0 1 
3 2  1 1 0 
4 1  0 1 0 

d = 2  3 x 3  cell 
N N T ( N )  N,=O 1 2 3 

3 1  0 0 0 1 
4 3  1 1 1 0 
5 9  3 3 3 0 
6 5  3 2 0 0 
7 9  1 5 3 0 
8 2  0 2 0 0 
9 4  0 1 3 0 

d = 2  4 x 4  cell 
N N - J N )  N,=O 1 2 3 4 

4 1 
5 4 
6 16 
7 34 
8 44 
9 68 

10 77 
11 90 
12 100 
13 84 
14 74 
15 45 
16 12 

0 
1 
4 

16 
14 
29 
11 
22 
4 
8 
0 
0 
0 

0 
1 
4 

11 
15 
25 
33 
40 
26 
32 

9 
12 
0 

0 
1 
4 
6 

11 
11 
24 
23 
46 
35 
27 
23 

5 

0 
1 
4 
1 
4 
3 
9 
5 

24 
9 

38 
10 

7 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

d = 2  5 ~ 5 c e l l  
N N T ( N )  N,=O 1 2 3 4 5 

5 1 0 0 0 0 0 1 
6 5 1 1 1 1 1 0 
7 25 5 5 5 5 5 0 
8 65 25 19 13 7 1 0 
9 179 65 51 36 21 6 0 

10 243 109 77 40 14 3 0 
11 560 187 181 117 57 18 0 
12 637 252 223 115 40 7 0 
13 1382 328 470 354 174 56 0 
14 1372 317 496 322 116 21 0 
15 2861 342 837 892 516 174 0 
16 2412 486 817 724 325 60 0 
17 1767 443 1151 1466 1207 500 0 
18 3386 366 1002 I I58 702 158 0 
19 6053 266 1168 1849 1724 1046 0 
20 3333 132 780 1205 959 257 0 
21 4991 28 674 1519 1693 1077 0 
22 1676 0 291 628 602 155 0 
23 1901 0 68 519 804 510 0 
24 271 0 0 102 139 30 0 
25 248 0 0 26 135 87 0 
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d = 2  6X6cell  
N NT(0) N , = 0  1 2 3 4 5 6  

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
77 
28 
29 
30 
31 
32 
33 
34 
35 
36 

1 
6 

36 
111 
356 
826 

1633 
3 370 
5 152 

11 035 
17 870 
31 410 
49 817 
79 163 

122 682 
177 701 
261 420 
348 760 
468 376 
571 124 
668 111 
722 144 
702 825 
640 132 
507 803 
369 278 
230 029 
124 655 
54 159 
18 505 
3 295 

0 
1 
6 

36 
111 
356 
574 

1423  
1840 
4 193 
4 690 

10 302 
10057 
21 134 
18 252 
36 169 
27 120 
49 933 
30 737 
50 658 
22 995 
31 358 

8 587 
9 379 
1121 
1023 

0 
0 
0 
0 
0 

0 
1 
6 

29 
91 

240 
471 

1043 
1770 
3 543 
5 508 

10 072 
14 275 
24 688 
31 404 
52 205 
58 418 
93 258 
88 482 

133 483 
100 881 
138 553 

75 238 
88 307 
28 120 
27 826 

3 732 
3 216 

0 
0 
0 

0 
1 
6 

22 
70 

139 
314 
560 

1184 
2 052 
4 196 
6 703 

13 064 
19 068 
33 170 
46 996 
70 797 
98 431 

125 269 
167 967 
173 533 
216038 
170 882 
185 460 
104 747 
93 981 
31 252 
23 298 

3 326 
1949 

0 

0 
1 
6 

15 
49 
66 

177 
245 
628 
890 

2 283 
3 105 
8 010 

10 065 
24 355 
28 602 
58 763 
68 614 

116 538 
133 547 
182 872 
197 297 
210 891 
201 522 
164 454 
130 968 
74 810 
46 590 
14 026 
6 475 

686 

0 
1 
6 
8 

28 
21 
76 
82 

259 
294 
936 

1019 
3 440 
3 503 

11 896 
11 328 
34 347 
31 031 
75 652 
67 657 

129 585 
109 771 
162 769 
123 648 
142 990 
92 383 
80 965 
41 332 
24 073 

7 996 
1724  

0 
1 
6 
1 
7 
4 

21 
17 
71 
63 

257 
209 
971 
705 

3 605 
2 401 

11 975 
7 493 

31 698 
17 812 
58 245 
29 127 
74 458 
31 816 
66 371 
23 097 
39 270 
10 219 
12 734 
2 085 

885 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

d = 3  2 ~ 2 x 2  cell 
N N T ( N )  N,=O 1 2 3 4 

~ 

2 1 0 0 1 0 0 
3 4 1 1 0 2 0 
4 8 2 3 2 0 1 
5 12 1 4 6 1 0 
6 14 0 5 4 5 0 
7 16 0 2 8 6 D 
8 10 0 0 5 5 0 
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