Adsorption of a self-avoiding walk, a real space renormalisation group study of $d=2,3$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 164333
(http://iopscience.iop.org/0305-4470/16/18/033)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:47

Please note that terms and conditions apply.

Adsorption of a self-avoiding walk, a real space renormalisation group study for $\boldsymbol{d}=\mathbf{2 , 3}$

Kurt Kremer
Institut für Festkörperforschung der Kernforschungsanlage Jülich, Postfach 1913, D-5170 Jülich, West Germany

Received 27 April 1983

Abstract

We present a real space renormalisation group calculation for the adsorption of a single self-avoiding walk in d dimensions at a $(d-1)$-dimensional impenetrable wall. The case $d=3$ is used to check the method. For $d=2$ the result for the crossover exponent φ gives $\varphi=0.55 \pm 0.15$. This, in connection with enumerations of Ishinabe, clearly rules out de Gennes' conjecture $\varphi=1-\nu$ also for the case $d=2$. For $d=2$ cells up to 6×6 are used, for $d=3$ cells up to $3 \times 3 \times 3$.

1. Introduction

Real space renormalisation group (RSRG) methods were used to study many different problems of polymers during the last few years. For a detailed introduction we refer to a recent review of Stanley et al (1982) and references therein. Usually the exponent ν of the mean square radius of gyration was calculated. On the other hand, the problem of the adsorption of a single polymer chain (SAW) at a hard wall, exerting a short-range attractive force, has found a longstanding interest in the literature during the last twenty years (see Eisenreigler et al (1982), Whittington (1982) and references therein). This problem up to now has not been studied by rs methods. Such methods turned out to be very useful for investigations of semi-infinite magnetic systems, which were also examined in great detail during the last few years (see Binder (1983) and references therein). Considering recent developments in the field, it is necessary to study the adsorption especially for $d=2$ by RS methods. The question we are mainly concerned with here is the validity of de Gennes' (1976) conjecture $\varphi=1-\nu . \varphi$ is the crossover exponent, which describes the adsorption transition. Due to the $n \rightarrow 0$ theorem (de Gennes $1972,1977,1979$) the transition point corresponds to the so-called multicritical sb point of the semi-infinite n-vector model in the limit $n \rightarrow 0$ (Eisenriegler et al 1982). For this model Diehl and Dietrich (1981) found that $\varphi=1-\nu$ does not hold in general. In a recent exact enumeration of saws on a diamond lattice Ishinabe (1982b) calculated $\varphi_{d=3}=0.6 \pm 0.1$ instead of 0.41 . The best value up to now is due to Eisenriegler et al (1982), who found $\varphi_{d=3}=0.59 \pm 0.02$.

For $d=2$ Ishinabe (1982a) also found strong deviations from $\varphi=1-\nu$ by enumeration of SAws on a square lattice. He obtained approximately $\varphi=0.55 \pm 0.1$ (estimated from table III of his paper; he uses $\delta_{a}=1 / \varphi$). Because enumerations can only deal with very short chains it is necessary to investigate this problem by different techniques. Here we try it by a simple RSRG method. In § 2 we describe the method. In § 3 the
results for $d=3$ are compared with the results of the references mentioned above and the results for $d=2$ are given. Section 4 contains the conclusions.

2. Model and method

In the present work we model the polymer chain at a wall by a single SAw on a d-dimensional simple cubic lattice. The chain is confined to the positive half space $+:=\left\{\left(x_{1}, \ldots, x_{d}\right), x_{1} \geqslant 0\right\}$. Then each bond has a probability k_{s} if it is situated in the $x_{1} \equiv 0$ plane and the normal bulk-probability k_{B} otherwise. To renormalise the bulk couplings we use the simple cell method introduced by de Queiroz and Chaves (1980) for $d=2$ and Family (1981) for $d=3$. This method gives very accurate results for the exponent ν (see below) and is explained in detail in figure 1 . This renormalisation

Figure 1. Simple example for the cell renormalisation for scaling factor $s=2$. Each bond has the probability k_{B}. The walk starts at the origin (\square) and 'spans' if it reaches one of the circles (O). For the present example this leads to the renormalisation equation $k_{\mathrm{B}}^{\prime}=T\left(k_{\mathrm{B}}\right)=k_{\mathrm{B}}^{2}+2 k_{\mathrm{B}}^{3}+k_{\mathrm{B}}^{4}$. For more details see de Queiroz and Chaves (1980), Family (1981) or Kremer (1983).

Figure 2. Simple example for the renormalisation of the surface coupling analogously to figure 1 . The $\frac{1}{3}$-rule gives $k_{s}^{\prime}=T^{s}\left(k_{\mathrm{B}}, k_{s}\right)=k_{s}^{2}+k_{s} k_{\mathrm{B}}^{2}$ while the $\frac{1}{4}$-rule would give $k_{s}^{\prime}=T^{s}\left(k_{s}\right)=k_{s}^{2}+k_{s} k_{\mathrm{B}}^{2}+k_{s} k_{\mathrm{B}}^{3}$.
transformation leads to a non-trivial fixed point k_{B}^{*}. Near this fixed point one can write for the correlation length $\xi\left(k_{\mathrm{B}}\right)$

$$
\begin{equation*}
\xi^{2}\left(k_{\mathrm{B}}\right) \propto\left|k_{\mathrm{B}}-k_{\mathrm{B}}^{*}\right|^{-2 \nu} . \tag{1}
\end{equation*}
$$

On the other hand for the renormalised lattice one has (s is the renormalisation factor)

$$
\begin{equation*}
\xi\left(k_{\mathrm{B}}^{\prime}\right)=s^{-1} \xi\left(k_{\mathrm{B}}\right) \quad \text { with } k_{\mathrm{B}}^{\prime}=T\left(k_{\mathrm{B}}\right) \tag{2}
\end{equation*}
$$

(see e.g. Napiorowski et al (1979)).
This transformation has a relevant eigenvalue λ_{B} which in this simple case is just $\partial T\left(k_{\mathrm{B}}\right) /\left.\partial k_{\mathrm{B}}\right|_{k_{\mathrm{B}}^{*}}$ and one can write the exponent ν as $\nu=\ln s / \ln \lambda_{\mathrm{B}}$.

The situation now changes if one introduces a different coupling in the plane $x_{1}=0$. Nakanishi (1981) considered walks in infinite space $-\infty<x_{1}<\infty$ with a bond probability $k_{s}\left(\neq k_{\mathrm{B}}\right)$ in the 'defect plane' $x_{1}=0$ and found the value $T_{\mathrm{a}}=\infty$ for the critical temperature T_{a} of adsorption. But here we are looking for the case of an impenetrable hard wall (walk in +) exerting a short-range attractive force. Using the results of an earlier investigation (de Gennes 1976), a walk in a surface cell is only renormalised to an adsorbed step or walk if a finite fraction of the bonds lies in the surface. This fraction can be arbitrarily small, but has to be finite. In the following we use as our minimal values $\frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ and $\frac{1}{6}$. The corresponding renormalisations are then called after these values as $\frac{1}{3}$-rule etc. Figure 2 gives an example of such a surface cell
renormalisation. For more details we refer to Kremer (1983). We now have a twoparameter RS procedure with

$$
\begin{equation*}
\left(k_{\mathrm{B}}^{\prime}, k_{s}^{\prime}\right)=\mathscr{T}\left(k_{\mathrm{B}}, k_{s}\right)=\left(T\left(k_{\mathrm{B}}\right), T^{s}\left(k_{\mathrm{B}}, k_{s}\right)\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi\left(k_{\mathrm{B}}^{\prime}, k_{s}^{\prime}\right)=s^{-1} \xi\left(k_{\mathrm{B}}, k_{s}\right) \tag{4}
\end{equation*}
$$

has a multicritical fixed point ($k_{\mathrm{B}}^{*}, k_{s}^{*}$) with two eigenvalues >1.
Linearising the transformation around the multicritical point now results in

$$
\left(k_{\mathrm{B}}^{\prime}, k_{s}^{\prime}\right)=\left.\left(\begin{array}{cc}
\partial_{k_{\mathrm{B}}} T & 0 \tag{5}\\
\partial_{k_{\mathrm{B}}} T^{s} & \partial_{k_{s}} T_{s}
\end{array}\right)\right|_{\left(k_{\mathrm{B}}^{*}, k_{s}^{*}\right)}\binom{k_{\mathrm{B}}}{k_{s}}=\left(\begin{array}{cc}
\lambda_{\mathrm{B}} & 0 \\
\partial_{k_{\mathrm{B}}} T_{s} & \lambda_{s}
\end{array}\right)\binom{k_{\mathrm{B}}}{k_{s}}
$$

with eigenvalues λ_{B} and λ_{s}. This gives $\nu=\ln \lambda_{\mathrm{B}} / \ln s$, while the crossover exponent φ is determined by both eigenvalues (Stanley et al 1982) and given by

$$
\begin{equation*}
\varphi=\ln \lambda_{s} / \ln \lambda_{\mathrm{B}} . \tag{6}
\end{equation*}
$$

The generalisation to non-integer values of $s=\frac{3}{2}$ etc is then straightforward (Stanley et al 1982).

3. Results

For this calculation the numbers of spanning saws in cells up to $3 \times 3 \times 3(d=3)$ and up to 6×6 for $d=2$ were enumerated by a computer algorithm. For $k_{s}=k_{\mathrm{B}}$ the data are the same as earlier results by Family (1981), $d=3$, and Redner and Reynolds (1981), $d=2$. The results of the enumerations are given in the appendix.

Our main interest concerns the case $d=2$. Figure 3 shows the phase diagram, as it is given by the RS flux for $s=2, d=2$. The flux diagram reproduces qualitatively for $d=2$ the well known behaviour of semi-infinite magnets. The flow directions along the critical lines are indicated in the figure. The multicritical sB point is completely

Figure 3. Phase diagram given by the renormalisation flux for renormalisation of a 2×2 cell to a 1×1 cell. The multicritical fixed point ($k_{B}^{\mathrm{SB}}, k_{s}^{\mathrm{SB}}$) is completely unstable. As is claimed by field theory (Eisenriegler et al 1982, Dietrich 1982), $k_{\mathrm{B}}^{\mathrm{SB}}$ the critical bulk coupling at the multicritical SB point is the same as for the pure bulk case. For a direct comparison with the magnetic phase diagram we refer to Kremer (1983) or Dietrich (1982),
Table 1. Results of the renormalisation for $(a) d=2$ and $(b) d=3 . s_{1}$ gives the initial cell size, s_{2} the renormalised one. ν is calculated by the usual bulk renormalisation, $k_{\mathbf{B}}^{*}$ gives the fixed points. For φ and k_{s}^{*} all the results of the different rules are given: $\varphi_{1}, k_{s 1}^{*}$ corresponds to the $\frac{1}{3}$-rule, $\varphi_{2}, k_{s 3}^{*}$ to the $\frac{1}{4}$-rule, $\varphi_{3}, k_{s 3}^{*}$ to the $\frac{1}{5}$-rule and $\varphi_{4}, k_{s 4}^{*}$ to the $\frac{1}{6}$ rule. For simplicity this is only written in detail in one case. (The approximate error bar in (a) for φ is obtained by extrapolating s_{1} / s_{2} to 1 by two series $(6 / 1,6 / 2, \ldots 6 / 5 ; 2 / 1,3 / 2, \ldots, 6 / 5)$. Using these values for φ the error is about ± 0.150.)

unstable; the flow direction for $k_{s}<k_{s}^{\mathrm{SB}}$ points to the bulk fixed point. This fixed point is stable with respect to the critical line to the sB point and unstable with respect to the k_{B} axis. A similar behaviour is given for the line $\left(0, k_{s}^{\mathrm{c}}\right)\left(k_{\mathrm{B}}^{\mathrm{SB}}, k_{\mathrm{s}}^{\mathrm{SB}}\right)$. The point $\left(0, k_{s}^{\mathrm{c}}\right)$ represents the completely adsorbed chain at $T=0$. For $d=2$ (see figure 3) $k_{s}^{c}=1$ corresponds to the fully stretched chain, which means that the effective coordination number at $T=0$ is equal to one, as expected. In all cases, at the SB point we have $\lambda_{B}>\lambda_{\rho}$. At sB the bulk behaviour dominates and the crossover exponent φ is given by equation (6). Table $1(b)$ shows the results for $d=2$, for the sB point. The other fixed points are then trivial. As shown earlier by other authors, the exponent ν nicely extrapolates for increasing s_{1} and $s=s_{1} / s_{2}$ approaching 1 to the best value $v=0.75(d=2)$ (Nienhuis 1982). The value of φ is calculated in all cases for the $\frac{1}{3}-$, $\frac{1}{4}-, \frac{1}{5}-$ and $\frac{1}{6}$-rules. Here a convergent extrapolation to a 'one over infinity' rule for $s \rightarrow 1$ is very difficult. We estimate

$$
\begin{equation*}
\varphi \approx 0.55 \pm 0.15 . \tag{7}
\end{equation*}
$$

This value is in good agreement with Ishinabe's (1982a, b) enumerations. Therefore using both results also for $d=2$ the conjecture $\varphi=1-\nu$ can be rejected.

Table 1(a) gives the corresponding results for $d=3$. Although here only cells up to $3 \times 3 \times 3$ were used, it is clear that the results are in reasonable agreement with the known behaviour and the best value of $\varphi_{d=3}=0.59$ (Eisenriegler et al 1982). Also the renormalisation flux is qualitatively the same as in figure 3 .

4. Conclusion

We presented a simple RSRG calculation for the adsorption of a single SAW at a hard wall, which exerts a short-range attractive force. The case $d=3$ was treated to prove the validity of our method. For $d=2$ it was shown that the phase diagram, qualitatively, is the same as for $d=3$. In agreement with a recent enumeration of Ishinabe (1982a, b) the relation $\varphi_{d=2}=1-\nu_{d=2}(=0.25)$ is far outside the error bars.

Acknowledgments

The author thanks K Binder, E Eisenriegler and J W Lyklema for many helpful discussions. He thanks E Eisenriegler also for critical reading of the manuscript.

Appendix. Enumeration results

Here we give the complete enumeration results for spanning walks on cells up to the size $6 \times 6(d=2)$ and $3 \times 3 \times 3(d=3)$. The first column gives the number of bonds N, while the second gives the total number of spanning saws $N_{T}(N)$ with N bonds. The next columns give the number of saws separated due to the amount N_{s} of surface bonds. The total number of spanning walks is the same as found by Family (1981) ($d=3$) and Redner and Reynolds (1981) ($d=2$).

$d=2 \quad 2 \times 2$ cell							
N	$N_{\text {T }}(N)$	$N_{\text {s }}=0$	1	2			
2	1	0	0	1			
3	2	1	1	0			
4	1	0	1	0			
$d=2 \quad 3 \times 3$ cell							
N	$N_{\text {T }}(N)$	$N_{\text {s }}=0$	1	2	3		
3	1	0	0	0	1		
4	3	1	1	1	0		
5	9	3	3	3	0		
6	5	3	2	0	0		
7	9	1	5	3	0		
8	2	0	2	0	0		
9	4	0	1	3	0		
$d=2 \quad 4 \times 4$ cell							
N	$N_{\text {T }}(N)$	$N_{\text {s }}=0$	1	2	3	4	
4	1	0	0	0	0	1	
5	4	1	1	1	1	0	
6	16	4	4	4	4	0	
7	34	16	11	6	1	0	
8	44	14	15	11	4	0	
9	68	29	25	11	3	0	
10	77	11	33	24	9	0	
11	90	22	40	23	5	0	
12	100	4	26	46	24	0	
13	84	8	32	35	9	0	
14	74	0	9	27	38	0	
15	45	0	12	23	10	0	
16	12	0	0	5	7	0	
$d=2 \quad 5 \times 5$ cell							
N	$N_{\mathrm{T}}(\mathrm{N})$	$N_{\text {s }}=0$	1	2	3	4	5
5	1	0	0	0	0	0	1
6	5	1	1	1	1	1	0
7	25	5	5	5	5	5	0
8	65	25	19	13	7	1	0
9	179	65	51	36	21	6	0
10	243	109	77	40	14	3	0
11	560	187	181	117	57	18	0
12	637	252	223	115	40	7	0
13	1382	328	470	354	174	56	0
14	1372	417	496	322	116	21	0
15	2861	442	837	892	516	174	0
16	2412	486	817	724	325	60	0
17	4767	443	1151	1466	1207	500	0
18	3386	366	1002	1158	702	158	0
19	6053	266	1168	1849	1724	1046	0
20	3333	132	780	1205	959	257	0
21	4991	28	674	1519	1693	1077	0
22	1676	0	291	628	602	155	0
23	1901	0	68	519	804	510	0
24	271	0	0	102	139	30	0
25	248	0	0	26	135	87	0

| $d=2$ | 6×6 cell | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | $N_{\mathrm{T}}(0)$ | $N_{s}=0$ | 1 | 2 | | |

Adsorption of a SAW, RSRG study for $d=2,3$

$d=3$	$3 \times 3 \times 3$ cell										
N	$N_{\text {T }}(0)$	$\mathrm{N}_{\mathrm{s}}=0$	1	2	3	4	5	6	7	8	9
3	1	0	0	0	1	0	0	0	0	0	0
4	6	1	1	1	0	3	0	0	0	0	0
5	30	6	6	6	3	0	9	0	0	0	0
6	106	24	24	22	22	9	0	5	0	0	0
7	352	72	79	71	60	56	5	0	9	0	0
8	826	163	199	180	141	85	47	9	0	2	0
9	2378	341	524	534	451	277	171	74	2	0	4
10	5086	675	1074	1194	1053	664	299	97	26	4	0
11	13774	1250	2380	3090	2967	2295	1171	445	134	42	0
12	26426	2086	4240	6013	6241	4459	2315	797	239	36	0
13	67666	3275	8398	13695	15782	13469	8038	3709	1074	226	0
14	116734	4537	12818	23361	29565	24429	14177	5876	1737	234	0
15	278128	5430	21362	46124	65020	65851	43628	21927	7296	1490	0
16	409188	5317	26432	64537	101142	101500	68039	30969	9768	1484	0
17	878346	4088	33427	102477	187078	230771	178481	100092	34162	7770	0
18	1065878	2298	29967	109570	230128	291191	233395	122352	40621	6356	0
19	2013600	826	24200	129293	337841	533028	509208	327200	123652	28352	0
20	1951424	0	13005	95488	307579	521237	535056	335256	123678	20116	0
21	3133930	0	4558	70028	324309	724787	915592	710447	311747	72462	0
22	2295390	0	0	28226	186117	503485	720092	565887	248203	43380	0
23	2962104	0	0	7893	114992	463849	891025	890107	479474	114764	0
24	1460748	0	0	0	25236	180577	436512	492015	276086	50322	0
25	1369060	0	0	0	4564	83902	326316	502767	362051	89460	0
26	340804	0	0	0	0	6994	59320	141624	111738	21128	0
27	170872	0	0	0	0	528	15244	65387	71489	18224	0

References

Binder K 1983 in Phase Transitions and Critical Phenomena ed C Domb and J L Lebowitz vol 10 (New York: Academic)
Diehl H W and Dietrich S 1981 Phys. Rev. B 242878
Dietrich S 1982 Dissertation, Ludwig Maximilian Universität München
Eisenriegler E, Kremer K and Binder K 1982 J. Chem. Phys. 776296
Family F 1981 J. Physique 42189
de Gennes P G 1972 Phys. Lett. 38A 339
-_ 1976 J. Physique 371445

- 1977 Riv. Nuovo Cimento 7363
- 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)

Ishinabe T 1982a J. Chem. Phys. 765589

- 1982b J. Chem. Phys. 773171

Kermer K 1983 Dissertation Universität zu Köln
Nakanishi J 1981 J. Phys. A: Math. Gen. 14 L355
Napiorowski N, Hauge E H and Hemmer P C 1979 Phys. Lett. 72A 193
Nienhuis B 1982 Phys. Rev. Lett. 491062
de Queiroz S L A and Chaves C J 1980 Z. Phys. B 4099
Redner S and Reynolds P J 1981 J. Phys. A: Math. Gen. 142679
Stanley H E, Reynolds P J, Redner S and Family F 1982 in Real Space Renormalization ed T W Burkhardt and J M J van Leeuwen (Heidelberg: Springer)
Whittington S G 1982 Adv. Chem. Phys. 511

